Translate the following sentences into the language of quantifier logic using the given abbreviations. Remember that you do not need to worry about tense.

Lx = x is a location
Px = x is a person
Rx = x is rich
Bx = x is beautiful
Vxy = x visits y
j = Janine
k = Kathryn
f = France

1. “Janine and Kathryn are beautiful.”
 Bj & Bk

2. “Janine will visit France only if she’s rich.”
 Vjf ⊃ Rj

3. “Janine doesn’t visit anyone.”
 ~∃x(Px & Vjx)

4. “Kathryn is visiting some beautiful place.”
 ∃x((Lx & Bx) & Vkx)

5. “No one rich is visiting France.”
 ~∃x((Px & Rx) & Vxf)

6. “Everybody who is beautiful visits Janine.”
 ∀x((Px & Bx) ⊃ Vjx)

7. “Not everyone who visits Kathryn is beautiful.”
 ~∀x((Px & Vxk) ⊃ Bx)

8. “Kathryn doesn’t have anyone visiting her.”
 ~∃x(Px & Vxk)

9. “Not every place is beautiful.”
 ~∀x(Lx ⊃ Bx)

10. “Janine is not visiting anyone rich.”
 ~∃x((Px & Rx) & Vjx)
11. “Everyone who isn’t visiting Janine is visiting France instead.”
 $\forall x((P x \& \sim V x j) \supset V x f)$

12. “If Kathryn is visiting France, she isn’t visiting Janine.”
 $V k f \supset \sim V k j$

13. “The only people who ever visit France are the rich.”
 $\sim \exists x((P x \& V x f) \& \sim R x)$

14. “It’s not only beautiful people whom Janine visits.”
 $\sim \forall x((P x \& V j x) \supset B x)$

15. “Someone rich is visiting everywhere.”
 $\exists x((P x \& R x) \& \forall y(L y \supset V x y))$

16. “Someone is visiting somewhere beautiful.”
 $\exists x(P x \& \exists y((L y \& B y) \& V x y))$

17. “Kathryn is visiting one of Janine’s visitors.”
 $\exists x(P x \& (V x j \& V k x))$

18. “Anybody visiting Kathryn, is visiting someone beautiful.”
 $\forall x((P x \& V x k) \supset \exists y((P y \& (B y \& V x y)))$

19. “No one who is beautiful will visit someone who isn’t either rich or beautiful.”
 $\sim \exists x((P x \& B x) \& \exists y((P y \& \sim(R y \vee B y)) \& V x y))$
Use the truth tree method to determine whether the pair of sentences is equivalent. Number all lines. Label all derived lines with the rule and the line from which they were derived. Cross out discharged sentences.

20. \{ \neg \exists x (P_x \land \exists y (P_y \land L_{xy})), \forall x y ((P_x \land P_y) \supset \neg L_{xy}) \}
Use the truth tree method to determine whether the set of sentences is consistent. Number all lines. Label all derived lines with the rule and the line from which they were derived. Cross out discharged sentences.

21. \{ P \supset \exists z (Rz \& \forall w Jzw), \neg (\neg P \lor Q), \exists y \forall x (Jyx \& Rx) \}
Use the truth tree method to determine whether the arguments are valid. Number all lines. Label all derived lines with the rule and the line from which they were derived. Cross out discharged sentences.

22. $Fc \land \forall x \forall y ((R_{xy} \land F_x) \supset G_y)$
 \[\exists x \forall y R_{xy} \]
 \[\neg G_b \]
 \[\exists x (R_{cx} \land \neg (x=b)) \]
Logic—Sample Test C4 with Answers

23. \(\forall x((Hx \land Bxf) \supset I) \)
\(\forall x(Yx \supset Bxf) \)
\(\exists x(Hx \land Yx) \)

1

\(\forall x((Hx \land Bxf) \supset I) \)
\(\forall x(Yx \supset Bxf) \)
\(\exists x(Hx \land Yx) \)

1. \(\forall x((Hx \land Bxf) \supset I) \)
2. \(\forall x(Yx \supset Bxf) \)
3. \(\exists x(Hx \land Yx) \)
4. \(\sim I \)
5. \(Ha \land Ya \)
6. \(Ha \)
7. \(Ya \)
8. \((Ha \land Baf) \supset I \)
9. \(\sim(Ha \land Baf) \)
10. \(\sim Ha \sim Baf \)
11. \(Ya \supset Baf \)
12. \(\sim Ya \sim Baf \)

Valid