Definitions in Douglas Kutach’s Causation and Its Basis in Fundamental Physics

Events

A **possible fundamental event** *e* is a nomologically possible arena-region *R*, together with a nomologically possible arrangement of fundamental attributes throughout all of *R*.

An **actual fundamental event** *e* is an instance of a possible fundamental event in the actual arena.

A **coarse-grained event** is a set of possible fundamental events.

An **actual coarse-grained event** is a coarse-grained event one of whose members is an actual fundamental event (usually instantiated in some designated region of the arena).

An event *e′* is a **subevent** of an event *e* iff *e′*’s region is a subset of *e*’s region and the arrangement of *e′*’s fundamental attributes are included in *e*’s arrangement of fundamental attributes. An event *e* is a **superevent** of *e′* iff *e′* is a subevent of *e*.

An event is **full** iff it comprises fundamental attributes of every type throughout its entire region. (A coarse-grained event is full iff all its members are full.)

A **contextualized event** *E* is a coarse-grained event with a probability distribution assigned over all its members.

A **state** is a full event whose region is a subregion of a space-like surface.

A **global state** is a state whose region is a time slice, an inextendible space-like surface.

Terminance and Fixing

A fundamental event *c* **determines** (and is a **terminant** of) a fundamental event *e* iff the occurrence of *c* nomologically suffices for the occurrence of *e* (with *e*’s location relative to *c* being built into this relation).

A fundamental event *c* **fixes** a contextualized event *E* iff *c* nomologically suffices for *E*.

A fundamental event *c* **fixes a probability** *p* for a plain coarse-grained event *E* iff *c* nomologically suffices for a probability *p* for *E*.

For any possible fundamental event *f* and any two of its subevents, *c* and *e*, *e* **terminates** (is a **terminant** of) *e* iff *e* is a subevent of a member of a contextualized event that *c* fixes.

A fundamental event *c* is an **indeterminant** of a fundamental event *e* iff *c* is a terminant of *e* but not a determinant of *e*.

A fundamental event *c* **contributes** to (is a **contributor** to) a fundamental event *e* iff there exists a terminant *c′* of *e* such that *c′* with *c* excised from it is not a terminant of *e*.

A fundamental event *c* **purely contributes** to (and is a **pure contributor** to) a fundamental event *e* iff every subevent of *c* contributes to *e*.

A fundamental event *c* is a **trivial determinant** of a fundamental event *e* if the occurrence of *c* suffices (without any laws) for the occurrence of *e*.

A fundamental event *c* is a **minimal terminant** of a fundamental event *e* iff *c* terminates *e* and no proper subevent of *c* terminates *e*.

Relation of Terminance to Space-time Structure

An event *c* **space-like terminates** an event *e* iff (1) *c* terminates *e*, and (2) there exists a subevent *c′* of *c* and a subevent *c′′* of *e* such that (A) every point of *c′*’s region is space-like to every point of *e*’s region, and (B) the event *c′′* formed by excising *c′* from *c* (if it exists) does not terminate *c′*.

An event *c* is a **space-like pure contributor** to an event *e* iff *c* purely contributes to *e* and every point of *c*’s region is space-like to every point of *e*’s region.

A **c-path** is an everywhere differentiable path whose tangents are nowhere space-like and are well-defined and non-space-like in any mathematical limits along the path.

Points *p* and *q* are **c-connected** iff *p* = *q* or a c-path exists between *p* and *q*. Two regions are **c-connected** iff some point in one region is c-connected to some point in the other. Two events are **c-connected** iff their regions are c-connected.

A region *R* is **intermediate** between *c* and *e* iff (1) every point of *R* is c-connected between some point of *c*’s region and some point of *e*’s region, and (2) there is a connected space-like subregion *Q* of *R* such that every c-path from a point in *c*’s region to a point in *e*’s region intersects *Q*.

An event *c*’s **domain of terminance** is the union of the regions occupied by all the events *c* terminates. In paradigm fundamental theories, a point *p* is in *c*’s domain of terminance iff every inextendible c-path through *p* goes through *c*.

An event *c*’s **domain of influence** is the union of the regions occupied by events all of whose subevents *c* contributes to. In paradigm fundamental theories, a point *p* is in *c*’s domain of influence iff *c* is c-connected to *p*.

An event *c*’s **domain of contribution** is the union of the regions occupied by *c*’s pure contributors. In paradigm fundamental theories, a point *p* is in *c*’s domain of contribution iff *c* is c-connected to *p*.

Determinism: For any nomologically possible full event *c*, *c* determines a unique full event throughout its maximal domain of dependence. (A maximal domain of dependence for a fundamental event *c* is a region *R* generated by applying the fundamental laws to *c*, extending the arena if necessary, until *R* includes all and only those points *p* such that every inextendible c-path intersecting *p* also intersects *c*’s region.)

Ubiquitous determination: For any actual full event *c*, *c* determines a unique full event throughout its maximal domain of dependence.
Content Completeness: For any terminant \(c \) of any possible full event \(e \), there is a full subevent of \(c \) that terminates \(e \).

Non-spatiality: The fundamental laws disallow space-like terminance.

Continuity of Termination: For any possible fundamental event \(f \) (occupying region \(F \)) with any subevent \(e \) and any subevent \(c \) that terminates \(e \) and any subregion \(R \) of \(F \) intermediate between \(c \) and \(e \), there exists an intermediate terminant on the way from \(c \) to \(e \) occupying \(R \).

Shielding of Termination: For any possible fundamental event \(f \) with any subevent \(e \) and any subevent \(c \) that terminates \(e \), the probability any intermediate terminant \(i \) (on the way from \(c \) to \(e \)) fixes for any coarse-graining \(E \) of \(e \) is equal to the probability fixed for \(E \) by any superevents of \(i \) that are terminated by \(c \) and do not intersect \(i \)'s e-ward domain of influence.

Transitivity of Termination: For any \(e_1, e_2, \) and \(e_3 \), if \(e_1 \) terminates \(e_2 \) and \(e_2 \) terminates \(e_3 \), then \(e_1 \) terminates \(e_3 \).

Causal Directness: Any backtracking prob-influence that \(\hat{E}_1 \) exerts on \(E_3 \) (by fixing some turnaround event \(\hat{E}_2 \) that fixes a pair of probabilities for \(E_3 \)) is equal in value to the prob-influence that \(\hat{E}_1 \) exerts directly on \(E_3 \) (ignoring \(\hat{E}_2 \)).

Middle Conceptual Layer

A contrastive event is an ordered pair of contextualized events. The first member is the \textit{protrast}; the second member is the \textit{contrast}. The region where the pair agrees is said to be the contrastive event's background; the region of disagreement is its foreground.

A contrastive event \((C_1, C_2)\) fixes a contrastive event \((E_1, E_2)\) iff \(C_1\) fixes \(E_1\) and \(C_2\) fixes \(E_2\).

The maximal contrastive event fixed by \(C \) is the contrastive event consisting of whatever \(C \) fixes for the entire arena (trimmed to exclude regions where \(C \) does no fixing).

The degree to which \(E \) \textit{prob-depends} on \((C_1, C_2)\) is \(p_{\neg C_1}(E) - p_{C_2}(E) \).

A contrastive event \(C \) \textit{prob-influences} a coarse-grained event \(E \) to the degree that \(E \) prob-depends on \(C \). If the degree of prob-influence is positive, \(C \) is said to \textit{promote} \(E \). If negative, \(C \) is said to \textit{inhibit} \(E \).

A region of the arena \(R \) is \textit{intermediate} between \(c \) and \(e \) iff (1) every point of \(R \) is \texti{c}-connected between some point of \(c \)'s region and some point of \(e \)'s region, and (2) there is a connected space-like subregion \(Q \) of \(R \) such that every \(c \)-path from a point in \(c \)'s region to a point in \(e \)'s region intersects \(Q \).

A contextualized event \(\bar{I} \) is a fixed intermediate on the way from \(\bar{C} \) to \(\bar{E} \) (or \(E \)) iff the region \(R \) occupied by \(\bar{I} \) is intermediate between \(\bar{C} \) and \(\bar{E} \) (or \(E \)) and \(\bar{I} \) is the unique maximal contextualized event fixed by \(\bar{C} \) for \(R \) and \(\bar{I} \) fixes \(\bar{E} \) (or a probability for \(E \)).

Continuity of Probability-fixing: If a contextualized event \(\bar{C} \) fixes a probability \(p \) for some \(E \) and there exists some region \(R \) intermediate between \(\bar{C} \) and \(E \), then there exists a unique maximal contextualized event \(\bar{I} \) that occupies \(R \), is fixed by \(\bar{C} \), and fixes a probability \(p \) for \(E \). (This \(\bar{I} \) is a fixed intermediate on the way from \(\bar{C} \) to \(\bar{E} \).)

Shielding of Fixing: For any contextualized event \(\bar{C} \) that fixes a contextualized event \(\bar{E} \) in region \(Q \) and any contextualized event \(\bar{I} \) that is an fixed intermediate on the way from \(\bar{C} \) to \(\bar{E} \) (so that it is fixed by \(\bar{C} \) and fixes \(\bar{E} \)), then for any region \(R \) that lies entirely within \(\bar{C} \)'s domain of terminance and contains no points on a \(c \)-path going from \(\bar{I} \) to \(\bar{E} \), the contextualized event \(\bar{I} \)—defined as whatever \(\bar{C} \) fixes for \(R \cup Q \)—fixes \(\bar{E} \) (just like \(\bar{I} \) does).

Weak Transitivity of Fixing: If \(\bar{E} \) fixes a contextualized event throughout region \(R \), any event fixing \(\bar{E} \) also fixes a contextualized event throughout region \(R \).

Unidirectional Transitivity of Fixing: For any \(\bar{E}_1, \bar{E}_2, \) and \(\bar{E}_3 \), if \(\bar{E}_1 \) fixes \(\bar{E}_2 \) and \(\bar{E}_2 \) fixes \(\bar{E}_3 \) and \(\bar{E}_2 \) is intermediate between \(\bar{E}_1 \) and \(\bar{E}_3 \), then \(\bar{E}_1 \) fixes \(\bar{E}_3 \).

Strong Transitivity of Fixing: For any \(\bar{E}_1, \bar{E}_2, \) and \(\bar{E}_3 \), if \(\bar{E}_1 \) fixes \(\bar{E}_2 \) and \(\bar{E}_2 \) fixes \(\bar{E}_3 \), then \(\bar{E}_1 \) fixes \(\bar{E}_3 \).

A regular contrastivization of a coarse-grained event \(C \) is a contrastive event \((\bar{C}_1, \bar{C}_2)\) such that all three of the following conditions hold: (1) for every member of \(\bar{C}_1 \), there is a member of \(C \) agreeing with it where their regions overlap; (2) none of \(\bar{C}_2 \)'s members agrees with any of \(C \)'s members where their regions overlap; and (3) \(\bar{C}_1 \) and \(\bar{C}_2 \) agree with each other everywhere outside \(C \)'s region.

An irregular contrastivization of some coarse-grained event \(C \) is an ordered triplet \((\bar{B}, \bar{C}_1, \bar{C}_2)\) where \(\bar{B} \)'s region does not overlap with \(C_1 \) or \(C_2 \), and \(C_1 \) is identical to \(C \) (but with its location relative to \(\bar{B} \) added) and where \(C_2 \) is a coarse-grained event located in the same region as \(C_1 \) (relative to \(\bar{B} \)) but without any members that are members of \(C \).

An irregular contrastivization \((\bar{B}, \bar{C}_1, \bar{C}_2)\) prob-influences \(E \) to the degree \(p_{\bar{B}}(E|C_1) - p_{\bar{B}}(E|C_2) \).

An event \(C \) partially influences an event \(E \) iff some contrastivization (regular or irregular) of \(C \) prob-influences \(E \) to a non-zero degree.

Top Conceptual Layer

An event is a \textit{culpable cause} of \(E \) iff it successfully induces \(E \).

An actual event \(e \) (as \(C \) qua \(\hat{C} \) is \textit{culpable}_1 for an actual event \(e \) (as \(E \)) iff \(\hat{C} \) is a salient, significant promoter of \(E \).

An actual event \(e \) (as \(C \) qua \(\hat{C} \) is \textit{culpable}_2 for an actual event \(e \) (as \(E \)) iff a region \(R \) (including and surrounding \(e \)) has a contrastive effect \(\hat{E} \) imposed on it that significantly promotes \(E \). (The imposed \(\hat{E} \) is generated by taking what \(\hat{C} \) fixes for \(R \), conditionizing its protrast with a slight coarse-graining of the full fundamental event occupying \(R \), and adjusting its contrast in parallel in light of what \(C \) and other independent salient events promote for \(R \).)

An actual event \(e \) (as \(C \) qua \(\hat{C} \) is \textit{culpable}_3 for an actual event \(e \) (as \(E \)) iff it is \textit{culpable}_2 for an unfuzzled process going from \(c \) up to and including \(e \). An actual event is \textit{culpable}_4 for an actual event \(e \) (as \(E \)) iff there is a chain of culpability relations running from \(c \) to \(e \).